277 research outputs found

    Evidence of nitric acid uptake in warm cirrus anvil clouds during the NASA TC4 campaign

    Get PDF
    Uptake of HNO3 onto cirrus ice may play an important role in tropospheric NOx cycling. Discrepancies between modeled and in situ measurements of gas-phase HNO3 in the troposphere suggest that redistribution and removal mechanisms by cirrus ice have been poorly constrained. Limited in situ measurements have provided somewhat differing results and are not fully compatible with theory developed from laboratory studies. We present new airborne measurements of HNO3 in cirrus clouds from anvil outflow made during the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4). Upper tropospheric (\u3e9 km) measurements made during three flights while repeatedly traversing the same cloud region revealed depletions of gas-phase HNO3 in regions characterized by higher ice water content and surface area. We hypothesize that adsorption of HNO3 onto cirrus ice surfaces could explain this. Using measurements of cirrus ice surface area density and some assumptions about background mixing ratios of gas-phase HNO3, we estimate molecular coverages of HNO 3 on cirrus ice surface in the tropical upper troposphere during the TC4 racetracks to be about 1 Ă— 1013 molecules cm-2. This likely reflects an upper limit because potential dilution by recently convected, scavenged air is ignored. Also presented is an observation of considerably enhanced gas-phase HNO3 at the base of a cirrus anvil suggesting vertical redistribution of HNO3 by sedimenting cirrus particles and subsequent particle sublimation and HNO3 evaporation. The impact of released HNO3, however, appears to be restricted to a very thin layer just below the cloud. Copyright 2010 by the American Geophysical Union

    Outcomes from an Entry-level Occupational Therapy Doctoral Practice-Scholar Apprenticeship Program

    Get PDF
    The introduction of the occupational therapy doctoral (OTD) program to the field of occupational therapy (OT) education was intended to advance the field by developing future leaders, increasing advanced practice, and promoting scholarship in practice. Limited information to date is available regarding outcomes of the OTD program related to the future research potential of graduates. One such approach to promoting the scholarship of practice among OTD graduates is the use of the practice-scholar model. The practice-scholar model is designed to build research skills among OTD students to encourage their ongoing commitment to evidence-based practice through implementing their own research in practice. Founded in 2014, the Northern Arizona University (NAU) entry-level OTD program has implemented the practice-scholar model through their practice-scholar apprenticeship (PSA) program. The NAU PSA program involves a mentorship experience with OTD students engaging in faculty and/or community clinician led research. The purpose of this paper is to share evaluation results of the NAU PSA program related to the research development among the program’s graduates. NAU OTD students completed pre and post surveys regarding their expectations towards research and a post qualitative feedback session. Students reported statistically significant improvements in their research self-efficacy skills. Qualitatively students identified their developed research skills, the importance of research and their desire to continue implementing research in the future. The field of OT should continue to identify structural ways to support research in practice to realize the potential of future OTD practitioners

    MR diffusion changes in the perimeter of the lateral ventricles demonstrate periventricular injury in post-hemorrhagic hydrocephalus of prematurity

    Get PDF
    OBJECTIVES: Injury to the preterm lateral ventricular perimeter (LVP), which contains the neural stem cells responsible for brain development, may contribute to the neurological sequelae of intraventricular hemorrhage (IVH) and post-hemorrhagic hydrocephalus of prematurity (PHH). This study utilizes diffusion MRI (dMRI) to characterize the microstructural effects of IVH/PHH on the LVP and segmented frontal-occipital horn perimeters (FOHP). STUDY DESIGN: Prospective study of 56 full-term infants, 72 very preterm infants without brain injury (VPT), 17 VPT infants with high-grade IVH without hydrocephalus (HG-IVH), and 13 VPT infants with PHH who underwent dMRI at term equivalent. LVP and FOHP dMRI measures and ventricular size-dMRI correlations were assessed. RESULTS: In the LVP, PHH had consistently lower FA and higher MD and RD than FT and VPT (p\u3c.050). However, while PHH FA was lower, and PHH RD was higher than their respective HG-IVH measures (p\u3c.050), the MD and AD values did not differ. In the FOHP, PHH infants had lower FA and higher RD than FT and VPT (p\u3c.010), and a lower FA than the HG-IVH group (p\u3c.001). While the magnitude of AD in both the LVP and FOHP were consistently less in the PHH group on pairwise comparisons to the other groups, the differences were not significant (p\u3e.050). Ventricular size correlated negatively with FA, and positively with MD and RD (p\u3c.001) in both the LVP and FOHP. In the PHH group, FA was lower in the FOHP than in the LVP, which was contrary to the observed findings in the healthy infants (p\u3c.001). Nevertheless, there were no regional differences in AD, MD, and RD in the PHH group. CONCLUSION: HG-IVH and PHH results in aberrant LVP/FOHP microstructure, with prominent abnormalities among the PHH group, most notably in the FOHP. Larger ventricular size was associated with greater magnitude of abnormality. LVP/FOHP dMRI measures may provide valuable biomarkers for future studies directed at improving the management and neurological outcomes of IVH/PHH

    The transition to parenthood in obstetrics: Enhancing prenatal care for 2-generation impact

    Get PDF
    Obstetrics, the specialty overseeing infant and parent health before birth, could be expanded to address the interrelated areas of parents\u27 prenatal impact on children\u27s brain development and their own psychosocial needs during a time of immense change and neuroplasticity. Obstetrics is primed for the shift that is happening in pediatrics, which is moving from its traditional focus on physical health to a coordinated, whole-child, 2- or multigeneration approach. Pediatric care now includes developmental screening, parenting education, parent coaching, access to developmental specialists, brain-building caregiving skills, linkages to community resources, and tiered interventions with psychologists. Drawing on decades of developmental origins of health and disease research highlighting the prenatal beginnings of future health and new studies on the transition to parenthood describing adult development from pregnancy to early postpartum, we have proposed that, similar to pediatrics, the integration of education and intervention strategies into the prenatal care ecosystem should be tested for its potential to improve child cognitive and social-emotional development and parental mental health. Pediatric care programs can serve as models of change for the systematic development, testing and, incorporation of new content into prenatal care as universal, first-tier treatment and evidenced-based, triaged interventions according to the level of need. To promote optimal beginnings for the whole family, we have proposed an augmented prenatal care ecosystem that aligns with, and could build on, current major efforts to enhance perinatal care individualization through consideration of medical, social, and structural determinants of health

    Brain connectivity and socioeconomic status at birth and externalizing symptoms at age 2 years

    Get PDF
    Low childhood socioeconomic status (SES) predisposes individuals to altered trajectories of brain development and increased rates of mental illness. Brain connectivity at birth is associated with psychiatric outcomes. We sought to investigate whether SES at birth is associated with neonatal brain connectivity and if these differences account for socioeconomic disparities in infant symptoms at age 2 years that are predictive of psychopathology. Resting state functional MRI was performed on 75 full-term and 37 term-equivalent preterm newborns (n = 112). SES was characterized by insurance type, the Area Deprivation Index, and a composite score. Seed-based voxelwise linear regression related SES to whole-brain functional connectivity of five brain regions representing functional networks implicated in psychiatric illnesses and affected by socioeconomic disadvantage: striatum, medial prefrontal cortex (mPFC), ventrolateral prefrontal cortex (vlPFC), and dorsal anterior cingulate cortex. Lower SES was associated with differences in striatum and vlPFC connectivity. Striatum connectivity with frontopolar and medial PFC mediated the relationship between SES and behavioral inhibition at age 2 measured by the Infant-Toddler Social Emotional Assessment (n = 46). Striatum-frontopolar connectivity mediated the relationship between SES and externalizing symptoms. These results, convergent across three SES metrics, suggest that neurodevelopmental trajectories linking SES and mental illness may begin as early as birth

    Synthesizing pseudo-T2w images to recapture missing data in neonatal neuroimaging with applications in rs-fMRI

    Get PDF
    T1- and T2-weighted (T1w and T2w) images are essential for tissue classification and anatomical localization in Magnetic Resonance Imaging (MRI) analyses. However, these anatomical data can be challenging to acquire in non-sedated neonatal cohorts, which are prone to high amplitude movement and display lower tissue contrast than adults. As a result, one of these modalities may be missing or of such poor quality that they cannot be used for accurate image processing, resulting in subject loss. While recent literature attempts to overcome these issues in adult populations using synthetic imaging approaches, evaluation of the efficacy of these methods in pediatric populations and the impact of these techniques in conventional MR analyses has not been performed. In this work, we present two novel methods to generate pseudo-T2w images: the first is based in deep learning and expands upon previous models to 3D imaging without the requirement of paired data, the second is based in nonlinear multi-atlas registration providing a computationally lightweight alternative. We demonstrate the anatomical accuracy of pseudo-T2w images and their efficacy in existing MR processing pipelines in two independent neonatal cohorts. Critically, we show that implementing these pseudo-T2w methods in resting-state functional MRI analyses produces virtually identical functional connectivity results when compared to those resulting from T2w images, confirming their utility in infant MRI studies for salvaging otherwise lost subject data

    An allometric scaling relationship in the brain of preterm infants

    Get PDF
    Allometry has been used to demonstrate a power–law scaling relationship in the brain of premature born infants. Forty-nine preterm infants underwent neonatal MRI scans and neurodevelopmental testing at age 2. Measures of cortical surface area and total cerebral volume demonstrated a power–law scaling relationship (α = 1.27). No associations were identified between these measures and investigated clinical variables. Term equivalent cortical surface area and total cerebral volume measures and scaling exponents were not related to outcome. These findings confirm a previously reported allometric scaling relationship in the preterm brain, and suggest that scaling is not a sensitive indicator of aberrant cortical maturation

    Neonatal motor functional connectivity and motor outcomes at age two years in very preterm children with and without high-grade brain injury

    Get PDF
    Preterm-born children have high rates of motor impairments, but mechanisms for early identification remain limited. We hypothesized that neonatal motor system functional connectivity (FC) would relate to motor outcomes at age two years; currently, this relationship is not yet well-described in very preterm (VPT; born \u3c32 weeks\u27 gestation) infants with and without brain injury. We recruited 107 VPT infants - including 55 with brain injury (grade III-IV intraventricular hemorrhage, cystic periventricular leukomalacia, post-hemorrhagic hydrocephalus) - and collected FC data at/near term-equivalent age (35-45 weeks postmenstrual age). Correlation coefficients were used to calculate the FC between bilateral motor and visual cortices and thalami. At two years corrected-age, motor outcomes were assessed with the Bayley Scales of Infant and Toddler Development, 3rd edition. Multiple imputation was used to estimate missing data, and regression models related FC measures to motor outcomes. Within the brain-injured group only, interhemispheric motor cortex FC was positively related to gross motor outcomes. Thalamocortical and visual FC were not related to motor scores. This suggests neonatal alterations in motor system FC may provide prognostic information about impairments in children with brain injury
    • …
    corecore